Home
Class 12
MATHS
The range of sin^2theta+cos^4theta=A is...

The range of `sin^2theta+cos^4theta=A` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of sin^(2)theta+cos^(4)theta=A is

Show that the range of sin^(2) theta + cos^(4) theta si [(3)/(4),1]

If range of sin^(2)theta+cos^(4)theta is [k_(1),k_(2)], then the minimum value of cos2 theta+4cos theta+4 is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is:

If sin^(4)theta-cos^(4)theta=k^(4) , then the value of sin^(2)theta-cos^(2)theta is

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :

The range of 8 cos theta - 15 sin theta is