Home
Class 14
MATHS
If a*b*c means (a+b)/c for all number...

If `a*b*c` means `(a+b)/c` for all numbers except 0, then `(a*b*c)*a*b` is equal to (a) 0 (b) 1 (c) `(a+b+c)/(a b)` (d) `(a+b+a c)/(b c)` (e) `(a b+b c+c a)/(a+b+c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a*b*c means (a+b)/(c) for all numbers except 0, then (a*b*c)*a*b is equal to (a)0(b)1 (c) (a+b+c)/(ab) (d) (a+b+ac)/(bc) (e) (ab+bc+ca)/(a+b+c)

If (b + c) (y + z) - ax = b - c, (c + a) (z + x) - by = c - a and (a + b) (x + y) - cz = a - b , where a + b + c ne 0, then x is equal to a) (c + b)/(a + b + c) b) (c - b)/(a + b + c) c) (a - b)/(a + b + c) d) (a + b)/(a + b + c)

Show that: (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

The value of the determinant |-a b c a-b c a b-c| is equal to- 0 b. (a-b)(b-c)(c-a) c. (a+b)(b+c)(c+a) d. 4a b c

If a+b+c= 0 , then (c )/(a+b) + (b)/(a+c) + (a)/(b + c) = ?

If a + b + c = 0 , then find the value of ( ( a + b ) / c + ( b + c )/a + ( c + a ) / b ) times ( a /( b + c ) + b /( c + a ) + c /( a + b ) ) is :

Show that: (a-b)(a+b)+ (b-c) (b+c) +(c-a) (c+a) =0

If a+b+c= 0 , then (a+b)/(c ) + (b+c)/(a) + (c +a)/(b) = ?