Home
Class 12
MATHS
The value of the integral intalpha^beta ...

The value of the integral `int_alpha^beta 1/(sqrt((x-alpha)(beta-x)))dx`

Text Solution

Verified by Experts

`int_alpha^beta 1/(sqrt(beta-x)sqrt(x-alpha))`
`int_0^(pi/2) ((beta-alpha)sinthetad theta)/((beta-alpha)sinthetacostheta)`
`x=alpha,theta=0,x=beta,theta=pi/2`
`int_0^pi/2 2d theta`
`2(theta)_0^(pi/2)`
`pi`
option d is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the inntegral int_(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-x)))dx is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

int(dx)/(sqrt((x-alpha)(beta-x)))

Evaluate: int_(alpha)^(beta)(dx)/(sqrt((x-alpha)(beta-x)))dx

int (dx)/(sqrt((x-alpha)(x-beta)))

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

int(dx)/((x-alpha)sqrt((x-alpha)(x-beta)))