Home
Class 12
MATHS
If |z1|=|z2|=|z3|=......=|zn|=1, then ...

If `|z_1|=|z_2|=|z_3|=......=|z_n|=1`, then `|z_1+z_2+z_3+......+z_n|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|= ...... |z_n|=1 , prove that : |z_1+z_2+ ........ z_n|= |1/z_1+1/z_2+..........+1/z_n| .

If |z_1|=|z_2|=|z_3|=|(1)/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| = ...... .

If |z_1|=|z_2|=|z_3|"…."=|z_n|=1 then |z_(1)+z_(2)+"….."+z_(n)|=

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

If |z_(1)|=|z_(2)|=…... .=|z_(n)|=1 then |z_(1)+z_(2)+ .+z_(n)|=

If |z_1|=|z_2|=.=|z_n|=1, then the value of |z_1+z_2+z_3+..+z_n| is equal to (A) 1 (B) |z_1|+|z_2|+z_3|+…..+|z_n| (C) |1/z_1+1/z_2+1/z_3+……….+1/z_n| (D) n

If |z_(1)| = |z_(2)| = |z_(3)| = … |z_(n)| = 1 , then |z_(1) + z_(2) + z_(3) + ….. + z_(n) | =

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

If |z_(1)|=|z_(2)|=......=|z_(n)|=1, prove that |z_(1)+z_(2)+z_(3)++z_(n)|=(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))++(1)/(z_(n))

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n