Home
Class 11
MATHS
The value of lim(x->oo)(int0^x(tan^(-1)x...

The value of `lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

the value of lim_(x rarr oo)(int_(0rarr x)(tan^(-1)x)^(2)dx)/(sqrt(x^(2)+1))

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))