Home
Class 11
MATHS
If alpha and beta are the solutions root...

If `alpha` and `beta` are the solutions roots of `acostheta + bsintheta = c`, then choose the correct option (A) `sin alpha + sin beta = (2bc)/(a^2 + b^2 )` (B) `sin alpha sin beta = (c^2 - a^2 )/(a^2 + b^2 )` (C) `sin alpha + sin beta = (2bc)/(c^2 + b^2 )` (D) `sin alpha sin beta = (a^2 - b^2)/(c^2+ b^2 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha + sin beta = (2bc)/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that cos alpha cos beta = (c^(2) - b^(2))/(a^(2) + b^(2))

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))