Home
Class 12
MATHS
The value of the integral int0^(log5)(e^...

The value of the integral `int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx`

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

none of these

Text Solution

Verified by Experts

Putting `e^(x)-1=t^(2)` in the given integral, we have
`int_(0)^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3) dx=2 int_(0)^(2) (t^(2))/(t^(2)+4) dt =2 (int_(0)^(2) 1 dt -4int_(0)^(2) (dt)/(t^(2)+4))`
`=2[(t-2 tan^(-1)(t/2))_(0)^(2)]`
`=2[(2-2xxpi//4)]=4-pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx is

int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx=

The value of the integral int_0^1e^(x^2)dx

int_0^(log 5) e^(x) sqrt(e^(x)-1)/(e^(x)+3) dx =

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is