Home
Class 12
MATHS
For three non-zero vectors vec(a),vec(b)...

For three non-zero vectors `vec(a),vec(b) " and"vec(c )`, prove that `[vec(a)-vec(b) vec(b)-vec(c ) vec(c )-vec(a)]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

Prove that for any three vectors vec(a), vec(b) and vec(c), [vec(a) + vec(b) vec(b) + vec(c) vec(c) + vec(a)] = 2 [vec(a)vec(b)vec(c)]

If vec(a),vec(b),vec(c) are non-coplanar, non-zero vectors such that [vec(a),vec(b),vec(c)]=3,"then"{"["vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(a)"]"}^(2) is equal to

Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

Let vec r be a non-zero vector satisfying vec r dot vec a= vec rdot vec b= vec rdot vec c=0 for given non-zero vectors vec a , vec b and vec c dot Statement 1: [ vec a- vec b vec b- vec c vec c- vec a]=0 Statement 2: [ vec a vec b vec c]=0

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) + vec(b) + vec(c) = vec(0) , then prove that vec(a) xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) .