Home
Class 12
MATHS
If f(x)+f(y)=f((x+y)/(1-xy)); x>y in R,x...

If `f(x)+f(y)=f((x+y)/(1-xy))`; `x>y in R,xy!=1` , `lim_(x->0)f(x)/x=2`. Find `f(5),f'(-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(sqrt3) and f'(-2) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for allx,yinR.(xy!=1),and lim_(x->0) f(x)/x=2.Findf(1/sqrt3)and f'(1).

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0) (f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

Let f(x+y)=f(x)+f(y)+x^2y+y^2x and lim_(x rarr 0)(f(x))/x=1 . Find f'(3) .