Home
Class 12
MATHS
Prove the following : int(0)^(1)e^(-x)co...

Prove the following : `int_(0)^(1)e^(-x)cos^(2)xdx lt int_(0)^(1) e^(-x^(2))cos^(2)xdx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following int_(-1)^(1)x^(17)cos^(4)xdx=0

Prove the following int_(-1)^(1)x^(17)cos^(4)xdx=0

Prove the following int_(-1)^(1)x^(17)cos^(4)xdx=0

Prove the following int_(-1)^(1)x^(17)cos^(4)xdx=0

Prove the following int_(-1)^(1)x^(17)cos^(4)xdx=0

int_(0)^((pi)/(2))cos^(2)xdx

int_(0)^( pi/2)e^(x)cos xdx

int_(0)^( pi/2)e^(x)cos xdx

int_(0)^( pi/2)x^(2)cos^(2)xdx

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is