Home
Class 12
MATHS
Consider the function f(x)=(a^([x]+x)-1)...

Consider the function `f(x)=(a^([x]+x)-1)/([x]+x)` where [.] denotes the greatest integer function.
What is `lim_(xto0^(-)) f(x)` equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is