Home
Class 11
MATHS
the value of lim(x->oo) {int(0->x)(tan^-...

the value of `lim_(x->oo) {int_(0->x)(tan^-1 x)^2 dx}/sqrt(x^2+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(x rarr oo)(int_(0)^(x)(tan^(-1)x)^(2))/(sqrt(x^(2)+1))dx

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

The value of limit lim_(t rarr oo)(int_(0)^(1)(tan^(-1)x)^(2)dx)/(sqrt(t^(2)+1))

lim_(xto oo) (int_(0)^(x)tan^(-1)dt)/(sqrt(x^(2)+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is