Home
Class 12
MATHS
Show that the points A(- 2i + 3j+5k), B(...

Show that the points `A(- 2i + 3j+5k), B(i +2j + 3k) and C(7i - k)` are collinear.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points whose position vectors are -2i + 3j + 5k, i + 2j + 3k, lambda i - k are collinear, then lambda =

I : The three points with position vectors i - 2j + 3k, 2i + 3j - 4k and -7j + 10k are collinear. II : The vectors a - 2b + 3c, 2a + 3b - 4c, -7b + 10c are coplanar.

Show that the points A(-2 hat i+ 3 hat j + 5 hat k) , B(hat i+ 2 hat j+ 3 hat k) and C(7 hat i-hat k) are collinear.

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i-3 hat k) are collinear.

Show that the points A(-2hat i+3hat j+5hat k),B(hat i+2hat j+3hat k) and C(7hat i-hat k) are collinear.

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i- hat k) are collinear.

Show that the points A(-2 hat i + 3 hat j + 5 hat k) , B( hat i + 2 hat j + 3 hat k ) and C( 7 hat i - hat k ) are collinear.

Show the points A(3^i-2^j+^k) ,B(^i-3^j+5^k ) and C(2^i+^j-4^k) are the vectors of a right angled triangle.

If the three vectors 2i - j + k, I + 2j - 3k and 3i + lambda j + 5k are coplanar then lambda =