Home
Class 11
MATHS
The minimum value of f(x)=int0^4e^(|x-t|...

The minimum value of `f(x)=int_0^4e^(|x-t|)dt` where `x in [0,3]` is : (A) `2e^2-1` (B) `e^4-1` (C) `2(e^2-1)` (D) `e^2-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=int_(0)^(4)e^(|x-t|)dt where x in[0,3] is :(A)2e^(2)-1(B)e^(4)-1(C)2(e^(2)-1)(D)e^(2)-1

The minimum value of e^(2x^2-2x+1)sin^2x is e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^(2) - 2x + 1) sin^(2) x) is a)e b) 1//e c)1 d)0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

The value of int_0^(pi/4) (e^(1/(cos^2x)).sinx)/(cos^3 x)dx equals (A) (e^2-e)/2 (B) (e^4-1)/4 (C) (e^2+e)/4 (D) (e^4-1)/2

The value of int_0^1e^(x^2-x) dx is (a) 1 (c) > e^(-1/4) (d) < e^(-1/4)

The value of int_0^1e^(x^2-x) dx is (a) 1 (c) > e^(-1/4) (d) < e^(-1/4)

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)