Home
Class 12
MATHS
If DeltaABC having vertices A(acostheta1...

If `DeltaABC` having vertices `A(acostheta_1, asintheta_1), B(acostheta_2, asintheta_2), and C(acostheta_3, asintheta_3)` are equilateral triangle, then prove that `cos theta_1 + costheta_2 + cos theta_3 =0 and sintheta_1 + sintheta_2 + sintheta_3 =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If A B C having vertices A(acostheta_1,asintheta_1),B(acostheta_2asintheta_2),a n dC(acostheta_3,asintheta_3) is equilateral, then prove that costheta_1+costheta_2+costheta_3=sintheta_1+sintheta_2+sintheta_3=0.

If (acostheta_1,asintheta_1),(acostheta_2,asintheta_2) and (acostheta_3,asintheta_3) represent the vertices of an equilateral triangle inscribed in a circle, then (a) costheta_1+costheta_2+costheta_3=0 (b) sintheta_1+sintheta_2+sintheta_3=0 (c) tantheta_1+tantheta_2+tantheta_3=0 (d) cottheta_1+cottheta_2+cottheta_3=0

If (acostheta_1,asintheta_1),(acostheta_2,asintheta_2) and (acostheta_3,asintheta_3) represent the vertices of an equilateral triangle inscribed in a circle, then (a) costheta_1+costheta_2+costheta_3=0 (b) sintheta_1+sintheta_2+sintheta_3=0 (c) tantheta_1+tantheta_2+tantheta_3=0 (d) cottheta_1+cottheta_2+cottheta_3=0

If (a costheta_1,asintheta_1),(acostheta_2,a sintheta_2) , and (acostheta_3a sintheta_3) represent the vertces of an equilateral triangle inscribed in a circle. Then.

If (a costheta_1,asintheta_1),(acostheta_2,a sintheta_2) , and (acostheta_3a sintheta_3) represent the vertces of an equilateral triangle inscribed in a circle. Then.

If sin theta_1 + sintheta_2 + sin theta_3=3, then find the value of cos theta_1 + cos theta_2 + cos theta_3.

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.