Home
Class 11
MATHS
lim(x rarr1)(log x)/(x-1)=...

lim_(x rarr1)(log x)/(x-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(1+log x-x)/(1-2x+x^(2))=1 b.-1 c.0 d.-1/2

lim_(x rarr e)(log x-1)/(x-e)=(1)/(e)

L=lim_(x rarr oo)((log x)/(x))^((1)/(x))

lim_(x rarr oo)((log x)/(x))^(1/x)

Lim_(x rarre)(log x-1)/(x-e)=

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr1)((x)/(x-1)-(1)/(log x))

The value of lim_(x rarr1)(log x)/(sin pi x) is

lim_(x rarr 1) (log_(e)x)/(x-1) equals :

lim_(x rarr0)[(log(1+x))/(x)]^((1)/(x)) equals-