Home
Class 12
MATHS
If in a triangle ABC a,b,c are roots of ...

If in a triangle `ABC` a,b,c are roots of the equation `x^3 - 11 x^2 + 38 x - 40 = 0` then `sum (cos A)/a` equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the roots of the equation 3x^(2) - 7x + 11 = 0

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

Let a,b,c be three roots of the equation x^(3)+x^(2)-333x-1002=0 then ((sum a^(3))-2sum a) is

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c