Home
Class 12
MATHS
lim(x->0)(1+x)^(1/x)=e...

`lim_(x->0)(1+x)^(1/x)=e`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

If lim_(x to 0)(1+x)^(1/x)=e, prove that lim_(x to 0)(1+3x)^(((x+2))/(x))=e^(6).

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Slove lim_(xto0)((1+x)^(1//x)-e)/x

lim_(x rarr0)((1+x)^(1/x)-e(1-(x)/(2)))/((1-cos x))

Find the following limits: lim_(xrarr0)((1+x)^(1/x)-e)/x