Home
Class 12
MATHS
Write the simplest form : tan^(-1)( (sqr...

Write the simplest form : `tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

Write the simplest form : cos^(-1)(sqrt(((sqrt(1+x^2) +1)/(2sqrt(1+x^2))))

Write the simplest form : cos^(-1)(sqrt(((sqrt(1+x^2) +1)/(2sqrt(1+x^2))))

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

prove tan ^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2 cos ^(-1) x, -1/2 le x le 1

Write into the simplest form: cot^(-1)(sqrt(1+x^(2))+x)

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1