Home
Class 12
MATHS
Find a polynomial f(x) of degree 4 which...

Find a polynomial f(x) of degree 4 which increases in the intervals `(-oo, 1)` and (2, 3) and decreases in the intervals (1, 2) and `(3, oo)` and satisfies the condition f(0)=1.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find a polynomial f(x) of degree 5 which increases in the interval (-infty, 2] and [6, infty) and decreases in the interval [2,6]. Given that f(0) = 3 and f'(4)-0 .

A polynomial function P(x) of degree 5 with leading coefficient one, increases in the interval (-oo, 1 ) and (3,oo) and decreases in the interval ( 1 , 3). Given that P(0) = 4 and P'(2)=0. Find th value P'(6).

A polynomial function P(x) of degree 5 with leading coefficient one,increases in the interval (-oo,1) and (3,oo) and decreases in the interval (1,3). Given that P(0)=4 and P'(2)=0. Find th value P'(6) .

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (-oo,1) and (2, 3). If f(1)= -8, then the range of f(x) is (a) [3,oo) (b) [-8,oo) (c) [-7,oo) (d) (-oo,6]

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(x)=0 has four real roots, then the range of values of leading coefficient of polynomial is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(x)=0 has four real roots, then the range of values of leading coefficient of polynomial is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(x)=0 has four real roots, then the range of values of leading coefficient of polynomial is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(1)= -8, then the range of f(x) is

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (oo,1) and (2, 3). If f(1)= -8, then the range of f(x) is