Home
Class 12
MATHS
The integral int (sin^2xcos^2x)/(sin^5x+...

The integral `int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx` is equal to (1) `1/(3(1+tan^3x))+C` (2) `(-1)/(3(1+tan^3x))+C` (3) `1/(1+cot^3x)+C` (4) `(-1)/(1+cot^3x)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))dx is equal to (1) (1)/(3(1+tan^(3)x))+C(2)(-1)/(3(1+tan^(3)x))+C(3)(1)/(1+cot^(3)x)+C(4)(-1)/(1+cot^(3)x)+C

The integral (sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx is equal to

The integral int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx is equal to

The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2)dx is equal to (where c is a constant of integration)

The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2)dx is equal to (where c is a constant of integration)

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Evaluate the following integral: int (sin^3x+cos^3x)/(sin^2 xcos^2x) dx.