Home
Class 12
MATHS
If in=int0^(pi/4) tan^n theta d theta, w...

If `i_n=int_0^(pi/4) tan^n theta d theta`, where n is +ve integer, then `n(I_(n-1)+I_(n+1))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_n = int_0^(pi//4) tan^n theta d theta , then for any +ve integer n, the value of n(I_(n - 1) + I_(n + 1)) is :

If I_n=int_0^(pi/4) tan^n x dx , ( n > 1 and is an integer), then

If I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, where n is a positive integer,then I_(10)+I_(8) is equal to (A)(1)/(9)(B)(1)/(8) (C) (1)/(7)(D)9

IfI_n=int_0^(pi/4)tan^n xdx ,(n >1 and is an integer), then I_n+I_(n-2)=1/(n+1) I_n+I_(n-2)=1/(n-1) I_2+I_4,I_4+I_6, ,a r einHdotPdot 1/(2(n+1))

If I_(n)=int_(0)^(pi//4) tan^(n)theta d theta for 1,2,3,… then I_(n-1)+I_(n+1)=

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -