Home
Class 12
MATHS
Let f(x)=int0^x(t^2)/(sqrt(1+t^2))\ dt. ...

Let `f(x)=int_0^x(t^2)/(sqrt(1+t^2))\ dt.` Then `int_1^2 1/({f^(prime)(x)}^2)\ dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then