Home
Class 11
MATHS
Prove that [(a^2+b^2)/(a+b)]^(a+b)> a^a ...

Prove that `[(a^2+b^2)/(a+b)]^(a+b)> a^a b^b >{(a+b)/2}^(a+b)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [(a^(2) + b^(2))/(a + b)]^(a + b) gt a^(a) b^(b) gt {(a + b)/(2)}^(a + b) , where a,b gt 0

If a ,b ,c are in G.P. then prove that (a^2+a b+b^2)/(b c+c a+a b)=(b+a)/(c+b)

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

If a ,b ,a n dc are in G.P. then prove that 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot