Home
Class 20
MATHS
| For 050 5 2 7, suppose that the equati...

| For 050 5 2 7, suppose that the equation (sin20 + 2/3 cos 20) - 5 = cos | 4 - 20 if the maximum value of 0 6 (where k is the covalent number), then find the value of (k + p).

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 4A=sin(A-20^(@)) , where 4A is an acute angle, the find the value of A.

The maximum value of the function 4cos x+3sin x+20

If (2,0) is a solution of the linear equations 2x+3y=k, then find the value of k.

The maximum value of 16cos^(5)theta-20cos^(3)theta+5cos theta is

If Cos 4A = Sin(A - 20), when 4A is an acute angle, find the value of A.

Consider the equation for 0<=theta<=2 pi(sin2 theta+sqrt(3)cos2 theta)^(2)-5=cos((pi)/(6)-2 theta) If greatest value of theta is (k pi)/(p) the (k,p are coprime),then find the value of (k+p)

The roots of 5x^(2)-7x+k=0 are sin A and cos A. Find the value of k.

The value of lim_(xrarrpi/4) (8-sqrt2(cos+sinx)^(5))/(1-sin2x)=5 k, then find the value of k.

If p=sin20^(@)-cos20^(@) then the value of cos40^(@) in terms of p is

If K = cos 20^(@) and cos x = 2K^(2) - 1 , then the possible value of x between 0^(@) and 360^(@) are