Home
Class 12
MATHS
The value of the integral int0^pi(x^2sin...

The value of the integral `int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integral int_(0)^(pi) (x sinx)/(1+cos^(2)x) dx

The value of the integral int_(pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

If the value of int_0^pi(x/(1+sinx))^2dx=lambda , then find the value of the integral =int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx

Evaluate the integrals int0pi/2(sinx)/(1+cos^2x)dx

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

The value of the integral sqrt2 int_0^(pi/2) f(sin2x) sinx dx=A (sqrt2/9) int_0^(pi/4) f(cos2x)cosx dx then the value of A is

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to