Home
Class 12
MATHS
The integral int0^pisqrt(1+4sin^2x/2-4si...

The integral `int_0^pisqrt(1+4sin^2x/2-4sinx/2dx)` equal (1) `pi-4` (2) `(2pi)/3-4-4sqrt(3)` (3) `4""sqrt(3)-4` (4) `4""sqrt(3)-4-pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_(0)^( pi)sqrt(1+4sin^(2)((x)/(2))-4sin((x)/(2))dx) equal (1)pi-4(2)(2 pi)/(3)-4-4sqrt(3)(3)4sqrt(3)-4(4)4sqrt(3)-4-(pi)/(3)

The integral int_0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

The integral int_(7pi//4)^(7pi//3) sqrt(tan^(2)x)dx is equal to :

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: (2) (3) (4)

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi