Home
Class 12
MATHS
If f is continuous at x=0 , where f(x)=x...

If `f` is continuous at `x=0` , where `f(x)=x^2+alpha` ,`x>=0`, `f(x)=2sqrt(x^2+1)+beta`, `x<0`. Find `alpha` and `beta` given that `f(1/2)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)={:{(x^(2)+alpha", for " x ge 0),(2sqrt(x^(2)+1)+ beta", for " x lt 0):} and f(1/2)=2 , then

If f(x) is continuous at x=0 , where f(x)=sin x-cos x , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(1+2x)^(1/x)", for " x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{(x^(2)+1", for " x ge 0),(2sqrt(x^(2)+1)+k ", for " x lt 0):} , then k=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{((cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)", for " x!=0),(2k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=a, where f(x) = (sqrt(x)-sqrt(a) + sqrt(x-a))/sqrt(x^(2) -a^(2)) , for x ne a , then f(a)=

If f(x) is continuous at x=a, where f(x) = (sqrt(x)-sqrt(a) + sqrt(x-a))/sqrt(x^(2) -a^(2)) , for x ne a , then f(a)=