Home
Class 11
MATHS
If G(x)=-sqrt(25-x^2), find the value of...

If `G(x)=-sqrt(25-x^2)`, find the value of `lim (x->1) (G(x)-G(1))/(x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

If G(x)=-sqrt(25-x^2),t h e n lim_(x->1)(G(x)-G(1))/(x-1)i s (a) 1/(24) (b) 1/5 (c) -sqrt(24) (d) none of these

If G(x)=-sqrt(25-x^2),t h e n lim_(x->1)(G(x)-G(1))/(x-1)i s (a) 1/(24) (b) 1/5 (c) -sqrt(24) (d) none of these

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?

If G(x)=.-sqrt(25-x^(2)),"find the value of " underset(xrarr1)"lim"(G(x)-G(1))/(x-1)

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =