Home
Class 11
MATHS
If cosx-sinalphacotbetasinx=cosa , then...

If `cosx-sinalphacotbetasinx=cosa ,` then the value of `tan(x/2)` is (a)`-tan(alpha/2)cot(beta/2)` (b) `tan(alpha/2)tan(beta/2)` (c)`-cot((alphabeta)/2)tan(beta/2)` (d) `cot(alpha/2)cot(beta/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cos x-sin alpha cot beta sin x=cos a, then the value of tan((x)/(2)) is (a)-tan((alpha)/(2))cot((beta)/(2)) (b) tan((alpha)/(2))tan((beta)/(2))(c)-cot((alpha beta)/(2))tan((beta)/(2))(d)cot((alpha)/(2))cot((beta)/(2))

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b)tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c)tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If "sin" alpha=ksinbeta then tan((alpha-beta)/(2)).cot((alpha+beta)/(2)) is equal to

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta), then ( i )tan(alpha)=2tan(beta)( ii) (1)/(2)tan(alpha)=tan(beta)( (ii) 2tan(alpha)=3tan(beta)( iv) 3tan(alpha)=2tan(beta)

If alpha+beta+gamma=2pi, then (A) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (B) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (C) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (D) none of these