Home
Class 12
MATHS
the value of int(1/e->tanx) (tdt)/(1+t^2...

the value of `int_(1/e->tanx) (tdt)/(1+t^2) + int_(1/e->cotx) (dt)/(t*(1+t^2)) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1/e)^tanx(tdt)/(1+t^2)+int_(1/e)^cotxdt/(t(1+t^2) is

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

For all values of , int_(1//e)^(tanx) (t)/(1+t^(2))dt+int_(1//e)^(tanx) (dt)/(t(t+t^(2))) has the value

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]

If I_(1)=int_(1//e)^(tanx)(t)/(1+t^(2))dtandI_(2)=int_(1//e)^(cotx)(dt)/(t(1+t^(2))) then the values of I_(1)+I_(2) is

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then