Home
Class 12
MATHS
if l=lim(x->0) (x(1+acosx) - bsinx)/x^3 ...

if `l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3` where ` l in R`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(3^x-1)/x

lim_(x->0) (x^2-3x+1)/(x-1)

lim_(x rarr 0) (cos (sinx )-1)/x^(2) =

lim_(x->0) (x^3-3x+1)/(x-1)

lim_(x to 0) (x^3 sin(1/x))/sinx

lim_(x rarr 0) (a^(sinx)-1)/(b^(sinx)-1) =

If l = underset( x rarr 0) ("Lim")( x ( 1+ a cos x ) - bsin x ) /( x^(3))= underset( x rarr 0 ) ("Lim") ( 1+a cos x ) /( x^(2))- underset( x rarr 0 ) ("lim")( b sin x )/( x^(3)) , where l in R , then