Home
Class 12
MATHS
Prove that the circle x^2 + y^2-6x-4y+9=...

Prove that the circle `x^2 + y^2-6x-4y+9=0` bisects the circumference of the circle `x^2 + y^2 - 8x-6y+23=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the circle x^2+y^2+4x+4y-1=0 bisects the circumference of the circle x^2+y^2+2x-3=0 .

Show that the circle x^2+y^2+4x+4y-1=0 bisects the circumference of the circle x^2+y^2+2x-3=0 .

If the circle x^2 + y^2 + 6x -2y + k = 0 bisects the circumference of the circle x^2 + y^2 + 2x- 6y-15=0 , then

If the circle x^2+y^2-6x-4y+9=0 bisects the circumference of the circle x^2+y^2-8x-6y+a=0 , then the value of a is ____

If the circle x^2+y^2-6x-4y+9=0 bisects the circumference of the circle x^2+y^2-8x-6y+a=0 , then the value of a is ____

If the circle x^(2) + y^(2) + 6x - 2y + k = 0 bisects the circumference of the circle x^(2) + y^(2) +2x - 6y - 15 = 0 , then k =

If the circle x^2+y^2+6x+8y+a=0 bisects the circumference of the circle x^2 + y^2 + 2x - 6y - b = 0 then (a + b) is equal to

If the circle x^(2) + y^(2) + 4x -22y + c = 0 bisects the circumference of the circle x^(2) + y^(2) - 2x + 8y - d = 0 , then c + d =

If the circle x^(2) + y^(2) + 4x - 6y - c = 0 bissects the circumference of the circle x^(2) + y^(2) - 6x + 4y - 12 = 0 , then c =