Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors, th...

If `veca, vecb, vecc are unit vectors, then `|veca-vecb|^2+|vecb-vec|^2+|vecc^2-veca^2|^2` does not exceed (A) 4 (B) 9 (C) 8 (D) 6

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+ |vecb-vecc|^2 + |vecc^2-veca^2|^2 does not exceed

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca,vecb,vecc are unit vectors, then : |veca -vecb|^(2)+|vecb -vecc|^(2)+|vecc-veca|^(2) does not exceed :

veca,vecb and vecc are three unit vectors . Show that, |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2le9 .

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6