Home
Class 12
MATHS
If vec r=lambda(vec a xx vec b) +mu(vec ...

If `vec r=lambda(vec a xx vec b) +mu(vec bxx vec c) + gamma(vec c xx vec a) and [vec a vecb vec c]=1/8` , then the value of `lambda + mu + gamma =`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec r = lambda (vec a xxvec b) + mu (vec b xxvec c) + gamma (vec c xxvec a) and [vec with bvec c] = (1) / (8), then the value of lambda + mu + gamma =

vec d = lambda (vec a xxvec b) + mu (vec b xxvec c) + nu (vec c xxvec a) and [vec aquad vec bquad vec c] = (1) / (8), then lambda + mu + nu =

If vec a , vec b ,a n d vec c are mutually perpendicular vectors and vec a=alpha( vec axx vec b)+beta( vec bxx vec c)+gamma( vec cxx vec a)a n d[ vec a vec b vec c]=1, then find the value of alpha+beta+gammadot

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

Let lambda = vec a xx (vec b + vec c), vec mu = vec b xx (vec c + vec a) and vec nu = vec c xx (vec a + vec b). Then

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If quad vec a+2vec b+3vec c=vec 0 and vec a xxvec b+vec b xxvec c+vec c xxvec a=lambda(vec b xxvec c) then what is the value of lambda?

If [3 vec a+7 vec b\ vec c\ vec d]=lambda[ vec a\ vec c\ vec d]+mu[ vec b\ vec c\ vec d] , then find the value of lambda+mudot

If vec a = i+j+k, vec b = i+j, vec c = i and (vec a xx vec b) xx vec c = lambda vec a + mu vec b , then lambda + mu

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to