Home
Class 14
MATHS
f(x)" afg "3x(1)=csc theta" if "x(1)(3)/...

f(x)" afg "3x_(1)=csc theta" if "x_(1)(3)/(x_(2))=cot theta,pi{(x_(1)^(2)-(1)/(x_(2)^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3x=cos ec theta and (3)/(x)=cot theta find the value of 3(x^(2)-(1)/(x^(2)))

If 3x=cos ec theta and (3)/(x)=cot theta, then find the value of 3(x^(2)-(1)/(x^(2)))

If 3x = cosec theta and 3/x = cot theta , find the value of 3(x^(2)- (1)/(x^(2))) .

If 3x=sec theta,(3)/(x) =tan theta then (x^(2)-(1)/(x^(2))) I equal to:

If 3x="cosec" alpha and (3)/(x)=cot alpha , then the value of 3(x^(2)-(1)/(x^(2))) is

lim_(x=1)[(pi cot pi x)/(x)+(3x^(2)-1)/(x^(2)-x^(4))]

tan theta+sec theta=x show that 2tan theta=x-(1)/(x),2sec theta=x+(1)/(x) hence prove that sin theta=(x^(2)-1)/(x^(2)+1)

If cosec theta = 3x and cot theta = (3)/(x) , then find the value of (x^(2) - (1)/(x^(2))) .

If 2 cos theta = x + (1)/(x), prove that 2 cos 3 theta = x ^(3) + (1)/(x ^(3)).

The vertices of a triangle are A(x_(1),x_(1)tan theta_(1)),B(x_(2),x_(2)tan theta_(2))and C(x_(3),x_(3)tan theta_(3)) if the circumcentre of Delta ABC coincides with the origin and H(bar(x),bar(y)) is the orthocentre,show that (bar(y))/(bar(x))=(sin theta1+sin theta_(2)+sin theta_(3))/(cos theta_(1)+cos theta_(2)+cos theta_(3))