Home
Class 12
MATHS
The line of intersection of the planes v...

The line of intersection of the planes `vecr.(3veci-vecj+veck)=1` and `vecr.(veci+4vecj-2veck)=2`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the cosine of the angel between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the cosine of the angle between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

Show that the following planes are at right angles: vecr.(2veci+vecj+veck)=15 and vecr.(veci+vecj-3veck)=3 .

Find the vector equation of the line passing through (1,2,3) and parallel to the planes vecr.(veci-vecj+2veck)=5 and vecr.(3veci+vecj+veck)=6 .

Find the value of lambda so that the plane vecr. (veci + 2vecj + 3veck) = 7 and vecr.(lambdaveci + 2vecj - 7veck) = 26 are perependicular to each other.

Find the point of intersection of the line vecr=(vecj-veck)+s(2veci-vecj+veck) and Xz-plane

Find the angle between veca=3veci+3vecj-3veck and vecb=2veci+vecj+3veck .

Find the angle between the vectors veci+2vecj+3veck and 3veci-vecj+2veck