Home
Class 12
MATHS
f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +....

`f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N)` then `lim_(n rarr oo) f(n)/n^2` is equal to (A) `1/2` (B) `1/3` (C) `2/3` (D) `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

f (n) = cot ^ (2) ((pi) / (n)) + cot ^ (2) backslash (2 pi) / (n) + ............ + cot ^ (2) backslash ((n-1) pi) / (n), (n> 1, n in N) then lim_ (n rarr oo) (f (n)) / (n ^ (2)) is equal to (A) (1) / (2) (B) (1) / (3) (C) (2) / (3) (D) 1, (n> 1, n in N)

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

5.lim_ (n rarr oo) (2 ^ (n + 1) + 3 ^ (n + 1)) / (2 ^ (n) + 3 ^ (n)) is

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)