Home
Class 12
MATHS
" 9."e^(x)log(e)x tan x...

" 9."e^(x)log_(e)x tan x

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

e^(tan^(-1)x)log(tan x)

Find (dy)/(dx), if 1) y=4^(log_(2)sin x)+9^(log_(3)cos x) 2) y=e^(2(log sec x))-9^(log_(3)tan x)

If f(x)=log_(x)(log_(e)x) , then the value of f'(e ) is -

Integration of (1)/(1+((log)_(e)x)^(2)) with respect to (log)_(e)x is ((tan^(-1)((log)_(e)x))/(x)+C(b)tan^(-1)((log)_(e)x)+C(c)(tan^(-1)x)/(x)+C(d) none of these

Evaluate: int(log_(e x)e*log_(e^2x)e*log_(e^3x)e)/x dx

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).