Home
Class 12
MATHS
Given a function f and a constant c!=0 s...

Given a function `f` and a constant `c!=0` such that `f(x)` is even and `g(x)=f(x-c)` is odd then `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x) then (1) g(x) is an odd function (2)g(x) is an even function (3) graph of f(x) is symmetrical about the line x=1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Statement 1: If f(x) is an odd function,then f'(x) is an even function.Statement 2: If f'(x) is an even function,then f(x) is an odd function.

Statement - I : If f(x) is an odd function, then f'(x) is an even function. Statement - II : If f'(x) is an even function, then f(x) is an odd function.

If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

If the three functions f(x),g(x) and h(x) are such that h(x)=f(x).g(x) and f'(x).g'(x)=c , where c is a constant then (f^('')(x))/(f(x))+(g^('')(x))/(g(x))+(2c)/(f(x)*g(x)) is equal to