Home
Class 14
MATHS
(f)*x sqrt(1+y)+y sqrt(1+x)=0...

(f)*x sqrt(1+y)+y sqrt(1+x)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

If sqrt(1-x^4) + sqrt(1-y^4) =k(x^2 - y^2) then show that dy/dx = {x sqrt(1-y^4)}/{y sqrt(1-x^4)}

Let k[f(x)+f(y)]=f(x sqrt(1-y^(2))+y sqrt(1-x^(2))) then k=: