Home
Class 12
MATHS
solve the following equation sec^(-1).(x...

solve the following equation `sec^(-1).(x)/(a) - sec^(-1).(x)/(b) = sec^(-1) b - sec^(-1) a, a ge 1, b ge 1, a!= b`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve,(sec^(-1))(x)/(a)-(sec^(-1))(x)/(b)=sec^(-1)b-sec^(-1)a

Solve the equation sec^-1(x/a) - sec^-1(x/b) = sec^-1b - sec^-1 a |a| ge 1, |b| ge 1

Is sec^(-1) (-x) = pi - sec^(-1) x , |x| ge 1 ?

If Sec^(-1)(x/a)-Sec^(-1)(x/b)=Sec^(-1)(b)-Sec^(-1)(a)andaneb , then x is equal to

If "Sec"^(-1)x/a-"Sec"^(-1)x/b="Sec"^(-1)b-Sec^(-1)a then x=

Solve the equation : cos^-1 (a/x) - cos^-1 (b/x) = cos^-1(1/b) - cos ^-1 (1/a), |a| ge 1, |b| ge 1.

cos(sec^(-1)x+cosec^(-1)x),|x|ge1