Home
Class 12
MATHS
If bar a xx bar b=bar c xx bar d,bar a ...

If `bar a xx bar b=bar c xx bar d,bar a xx bar c=bar b xxbar d` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [[bar a xx bar p, bar b xx bar p, bar cxx bar r]]+[[bar axx bar q, bar b xx bar r, bar c xx bar p]]+[[bar a xx bar r, bar b xx bar p,bar c xx bar q]]=0

if bar a+2 bar b+3bar c=bar 0 then bar axxbar b+bar b xx bar c+bar cxx bara = lambda (bar b xx bar c) ,where lambda=

If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [bar a bar b bar c]=2 , then l+m+n is equal to

Let bar a,bar b,bar c be three non-coplanar vectors and bar d be a non-zero vector, which is perpendicularto bar a+bar b+bar c . Now, if bar d= (sin x)(bar a xx bar b) + (cos y)(bar b xx bar c) + 2(bar c xx bar a) then minimum value of x^2+y^2 is equal to

If ?xxbar(b)=bar(c)xxbar(d),?xxbar(c)=bar(b)xxbar(d) then

bar a, bar b, bar c are three vectros, then prove that: (bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a)xxbar(b)=bar(c) and bar(b)xxbar(c)=bar(a), then

If bar(a),bar( c ) and bar(d) are not coplanar vectors and bar(d).(bar(a)xx(bar(b)xx(bar( c )xx bar(d))))=K[bar(a),bar( c ),bar(d)] then K = ….