Home
Class 11
MATHS
Which of the following are possible solu...

Which of the following are possible solutions of `|(y^2+z^2,xy,xz),(xy,z^2+x^2,yz),(zx,zy,x^2+y^2)|=8` are `(x,y,z)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

Find the following expressions (x-2y-z)(x^2+4y^2+z^2+2xy-2yz+zx)

Factorise : |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|

If x^2/(yz)+y^2/(zx)+z^2/(xy)=3 then (x+y+z)^3=

Prove that |{:(x^2+1,xy,xz),(xy,y^2+1,yz),(xz,yz,z^2+1):}|=1+x^2+y^2+z^2