Home
Class 12
MATHS
Let f(u) be a continuous function and fo...

Let f(u) be a continuous function and for any real number u. let [u] denote the greatest integer less than or equal to u. Show that for any x>1 `int_1^x [u]([u]+1) f(u)du = 2 sum_(i=1)^[x] i int_i^x f(u) du`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(2)^(3)u sqrt(5-u)du

If int_0^x {int_0^u f(t) dt}du is equal to (a) int_0^x (x-u) f(u) (b) int_0^xuf(x-u)du (c) x int_0^x f(u) du (d) x int_0^x uf(u-x)du

If int_0^x {int_0^u f(t) dt}du is equal to (a) int_0^x (x-u) f(u) (b) int_0^xuf(x-u)du (c) x int_0^x f(u) du (d) x int_0^x uf(u-x)du

int (du) / (u sqrt (u ^ (2) -1))

If f is continuous function and F(x)=int_0^x((2t+3). int_t^2 f(u)du)\ dt , then |(F^(2))/(f(2))| is equal to____ .

If int_0^x {int_0^u f(t) dx}du is equal to (a) int_0^x (x-u) f(u) (b) int_0^xuf(x-u)du (c) x int_0^x f(u) du (d) x int_0^x uf(u-x)du

int_0^x{int_0^uf(t)dt}\ du is equal to (a) int_0^x(x-u)f(u)du (b) int_0^x uf(x-u)du (c) x int_0^xf(u)du (d) x int_0^x uf(u-x)du

int_0^x{int_0^uf(t)dx}\ du is equal to (a) int_0^x(x-u)f(u)du (b) int_0^x uf(x-u)du (c) x int_0^xf(u)du (d) x int_0^x uf(u-x)du

If f is continuous function and F(x)=int_0^x((2t+3)dotint_t^2f(u)d u)dt , then |(F^(2))/(f(2))| is equal to_____

Let A = { a, e, i, o, u } and B = { a, i, u } . Show that A ∪ B = A