Home
Class 12
MATHS
If (a^2+b^2+c^2) (b^2+c^2+d^2) <= (ab + ...

If `(a^2+b^2+c^2) (b^2+c^2+d^2) <= (ab + bc +cd)^2` where `a,b,c,d` are non-zero real numbers, then they are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c and d are in G.P. show that (a^2+ b^2+ c^2) (b^2 + c^2 + d^2)= ( ab + bc + cd)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2