Home
Class 11
MATHS
sqrt(sqrt(7+sqrt(48))-sqrt(7-sqrt(48)))=...

`sqrt(sqrt(7+sqrt(48))-sqrt(7-sqrt(48)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate sqrt(3+sqrt(3)+sqrt(2+sqrt(3))+sqrt(7+sqrt(48)))

Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

1/(sqrt(7)+sqrt(3))\times (sqrt(7)-sqrt(3))/(sqrt(7)-sqrt(3))

If sqrt(3+sqrt3+sqrt(2+sqrt3+sqrt(7+sqrt(48))))=p+sqrtq then find p, q

show that (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))times(sqrt(7)-sqrt(5))/(sqrt(7)-sqrt(5)) =frac{(sqrt(7)-sqrt(5))^(2)}{2}

Rationailise the denominatios (1)/(sqrt(7)+sqrt(2))-(sqrt(7)+sqrt(2))/(sqrt(7)-sqrt(2))