`(1+z)/z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z| = 1 , then ((1 + z)/(1 + z)) equals :

If |z_(1)|=|z_(2)|=....|z_(n)|=1 , then show that, |z_(1)+z_(2)+z_(3)+....z_(n)|= |(1)/(z_(1))+(1)/(z_(2))+(1)/(z_(3))+...+(1)/(z_(n))|

If z_1 , z_2 are nonreal complex and |(z_1+z_2)/(z_1-z_2)| =1 then (z_1)/(z_2) is

If |z_(1)| = |z_(2)| = ….. |z_(n)| = 1 , prove that |z_(1) + z_(2) + …….. z_(n)| = |(1)/(z_(1)) + (1)/(z_(2)) + ……….. + (1)/(z_(n))| .

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If z_(1);z_(2) and z_(3) are the vertices of an equilateral triangle; then (1)/(z_(1)-z_(2))+(1)/(z_(2)-z_(3))+(1)/(z_(3)-z_(1))=0

If z + (1)/(z) = -1 then z^(5) + (1)/(z^(5)) =