Home
Class 11
MATHS
sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)...

`sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^@ prove that: sin(B+2C)+sin(C+2A)+sin(A+2B)= 4 sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4sin ((BC) / (2) sin ((CA) / (2)) sin ((AB) / (2)

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

If A + B + C =180^@ , prove that : sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4 sin frac (B-C)(2) sin frac (C-A)(2) sin frac (A-B)(2) .

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))