Home
Class 12
MATHS
Let F(x) =int(sinx)^(cos x) e^((1+arcsi...

Let ` F(x) =int_(sinx)^(cos x) e^((1+arcsin t)^2) dt` on `[0,pi/2]` then(A) `F''(c) =0 ` for all `c in (0,pi/2)` (B) `F''(c) =0 ` for some `c in (0,pi/2)` (C) `F'(c) !=0 ` for all `c in (0,pi/2)` (D) `F'(c) =0 ` for some `c in (0,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 4^(sin x) satisfies the Rolle's theorem on [0, pi] , then the value of c in (0, pi) for which f'(c ) = 0 is

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If f(x)=int_0^x e^(cost)/(e^(cost)+e^-(cost))dt , then 2f(pi)= (A) 0 (B) pi (C) -pi (D) none of these

If f(x)=int_0^x e^(cost)/(e^(cost)+e^-(cost))dt , then 2f(pi)= (A) 0 (B) pi (C) -pi (D) none of these

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) none of these

Suppose that f(x) is continuous in [0, 1] and f(0) = 0, f(1) = 0 . Prove f(c) = 1 - 2c^(2) for some c in (0, 1)

Suppose that f(x) is continuous in [0, 1] and f(0) = 0, f(1) = 0 . Prove f(c) = 1 - 2c^(2) for some c in (0, 1)

Suppose that f(x) is continuous in [0, 1] and f(0) = 0, f(1) = 0 . Prove f(c) = 1 - 2c^(2) for some c in (0, 1)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)